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How to approach substance identification in qualitative bioanalysis
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Abstract

The ultimate goal in qualitative analysis in the biosciences is to demonstrate with acceptable probability that for an
unknown constituent in a sample only one substance comes into consideration and that all other substances can be rejected.
In the biosciences, identification of relevant substances in complex matrices through database retrieval is frequently required.
Yet, despite its importance, the subject has not received much attention, so that progress has been limited and relevant
literature is scarce. As a result, one can conclude from many publications and reports that qualitative analysis in practice is
often not being addressed properly. In this paper, some fundamental aspects of qualitative analysis will be discussed and a
general approach is provided for the correct identification of organic substances in complex matrices through database
retrieval. Special attention is given to the choice of proper analytical techniques and their inter-laboratory standard
deviations, as well as to match factors and decision criteria based on applying multiple analytical techniques, also if the latter
have different dimensions (e.g. retention data and spectral data). In addition, the requirements for suitable databases are
outlined and the need for inter-laboratory cooperation is emphasized.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction matrices may be rather complex (biological fluid,
soil, waste water).

Qualitative analysis deals with the detection and De Zeeuw [1] suggested that qualitative analysis
identification of one or more compounds in a sample. can be subdivided into directed searches and undi-
The compounds of interest are called analytes and rected searches. The former is aimed at one or more
the remainder of the sample is called matrix. This specific compounds (e.g. does the sample contain
type of work is of vital importance in the analysis of amphetamines). The undirected search comprises the
all kinds of products (e.g. pharmaceuticals and screening for a large variety of substances of interest,
foodstuffs, including impurity profiling) but also in for example in systematic toxicological analysis
areas such as intoxications, drug-abuse testing, dop- (STA), which is aimed at any substance that may be
ing, environmental pollution, occupational health, harmful. Furthermore, a distinction can be made
metabolic profiling, etc. Often, the concentrations of between different types of identification:
the analytes are very low (ppm–ppb range) and the

• Identification of a (relatively) pure substance,
usually by powerful spectrometric techniques like*Corresponding author. Tel.: 131-50-3633-336; fax: 131-50-
NMR, IR and MS, is called structure elucidation.3637-582.
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only small amounts of sample are available, or on STA, but the principles are equally applicable to
when the sample is a complex matrix. other areas.

• If there is a priori information about the specific
identity of the substance(s) in the sample, estab-
lishing the presence of one or more substances

2. Identification
may be done through confirmation, i.e. by com-
paring the properties of the expected substance(s)

In database retrieval the properties of an unknown
with those of an appropriate reference substance.

substance are compared with the properties of refer-
For instance, when the police confiscates a street-

ence substances present in a database. If the prop-
drug sample from a cocaine dealer, a directed

erties of an unknown substance adequately match the
search for cocaine can be carried out and the

properties of only one single reference substance the
outcomes of the tests can be compared with those

unknown substance has been identified. The identifi-1given by the reference substance cocaine .
cation process will, however, usually result in a list• If there is no a priori information about the
of substances, the properties of which are more or

presence and the identity of the analyte(s) in the
less matching those of the unknown. Then the

sample an undirected search must be carried out.
identification process has to continue until only one

Identification may then be achieved through data-
substance remains in the list. In other words, to reject

base retrieval, i.e. the properties of the un-
all substances in the database, except one, is the

known(s) are being compared with those of a
ultimate goal in the identification process. Important

large number of reference substances in a data-
factors involved in this identification process are the

base and a match is being sought. This process is
choice of the analytical methods, the identification

called recognition.
parameters and the size and the scope of the avail-
able database.

It should be stressed that many cases initially
requiring a directed approach often need an undi-
rected follow up. For example, after having con- 2.1. Detection and identification methods
firmed cocaine in the above streetdrug sample, an
undirected search will indicate whether other rel- Qualitative analytical methods can be subdivided
evant analytes may be present, e.g. XTC or caffeine. into two categories: (i) classification methods; and

Despite the importance of qualitative analysis in (ii) identification methods.
various bioscientific areas, the subject has not re- Classification methods yield a selective signal for
ceived much attention in recent years, so that pro- a class or group of substances, whereas identification
gress has been limited and relevant literature is methods yield a selective signal for a single sub-
scarce. As a result, one must conclude from many stance. Although classification methods do not fur-
publications and reports that qualitative analysis in nish the identity of a specific substance, they can be
practice is often being addressed inadequately. In used for class detection or to narrow the number of
this paper, some fundamental aspects of qualitative possible candidates, and thus can play an important
analysis are being discussed and an approach is role in the identification process. Examples of classi-
provided for the correct identification of organic fication methods are color reactions, such as the
substances in complex matrices by means of data- Marquis spot test [2], immunoassays [2] and receptor
base retrieval. For simplicity reasons, we will focus assays [3].

Identification methods yield a signal or signals for
a substance which reflect a particular property of the

1Note that this process is based on finding a satisfactory match substance. Analytical signals are for instance, re-
between the identification parameter of the unknown with that of

tention behaviour in a chromatographic technique orthe reference substance presumed to be present. Usually, con-
a spectrum in a spectroscopic technique. There existsfirmation procedures do not (adequately) address the question

whether other substance(s) may also give satisfactory matches. a large difference in identification power (IP) be-
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tween various methods [4]. Obviously, the retention 2.3. Databases
in TLC will give much less information about the
identity of a substance than retention in GC com- Once the most suitable identification method(s)
bined with a mass spectrum. However, also within a has (have) been selected and after it has been
technique, there may be considerable differences in established which way the identification parameters
IP: A given TLC system A can be much better have to be determined and standardized, a database
suitable for identification than a TLC system B. can be formed by collecting data of as many as
Several mathematical methods have been described possible relevant substances. It must be realized that
to determine the IP of a single analytical method, or a substance that is not present in the database cannot
the IP of combinations of analytical methods [5–9]. be found by database retrieval (false negative). Even
On the basis of IP the best methods for identification worse, when the unknown substance is not present in
can be selected [10,11]. the database a reference substance in the database

may give such a match that a false identification is
made (false positive).

2.2. Identification parameters Depending on the area of interest and the methods
preferentially applied in that area, the size and scope

For the identification of analytes in a complex of a suitable database may be different: In doping
matrix, the more suitable methods are separation analysis, the relevant substances will be those that
techniques with a non-selective detector, e.g. GC– are banned in sports and the methods applied will
FID, or hyphenated techniques where a separation focus particularly on substances such as anabolic
method is combined with a selective detector, e.g. steroids or stimulants. Yet, when trying to assess
GC–MS and LC–DAD. TLC combined with color environmental pollution, the focus will be much
reactions can also be considered [12]. more on halogenated hydrocarbons and pesticide

When the retention behaviour in a chromatograph- residues.
ic system, i.e. the mobility corresponding with the It should be stressed, however, that any database
center point (apex) of a chromatographic peak, is should be as large as possible. Not only should it
used for identification purposes, this retention should include the parent compounds, but also decomposi-
be standardized in such a way that within the tion products and metabolites. Furthermore, sub-
laboratory (intralaboratory) and/or from laboratory- stances that may interfere in the method should be
to-laboratory (interlaboratory) parameters are ob- present, such as matrix components, plasticizers,
tained that are reliable and reproducible. Stan- antioxidants. Finally, the selection of relevant sub-
dardization of retention behaviour is called cali- stances should be made as broad as possible, be
bration. For instance in GC, retention times are universal and the database should be kept up to date.
usually converted to the Kovats retention index (RI)
by calibration using n-alkanes in combination with 2.4. Mathematical description of the identification
relevant drugs [13]. The resulting RI values are used process
in the identification process and are called identifica-
tion parameters. In the mathematical identification process the set

A single identification method can yield a one- of all substances in the database is R. R 5 hr ,1

dimensional identification parameter (i.e. a number r , . . . , r , . . . , r j, where N is the total number of2 i N

such as the RI) or a multidimensional identification substances in the database. Thus, R can also be
parameter, i.e. an array or vector, such as a spectrum. denoted as the a priori set of candidates.

Multidimensional identification parameters may Let U 5 hu , u , . . . , u , . . . , u j be the set of L1 2 k L

also be obtained from two or more identification relevant analytes in the sample. Since each unknown
methods, each yielding a one-dimensional identifica- substance must be present in the database, U is a
tion parameter, e.g. two or more TLC systems run in subset of R. Identification can now be described by
parallel, each producing a standardized R value. the process leading to the decision that the unknownf
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u is substance r (i.e. u 5 r ). The aim of the such an ideal situation where unambiguous identifi-k i k i

identification process is to reduce the a priori set of cation of the substances occurs. For instance, when
candidates (set R) to a set comprising only a single the signal is the molecular weight as determined by
substance. In practice, however, usually a set com- CI–MS and each substance in the database has a
prising a small number of candidates remains for different molecular weight, identification will be
each of the L unknowns. straightforward.

In the ideal situation, an identification method In practice, however, especially with larger data-
yields different signals for all substances in the bases, some substances may yield an identical signal,
database. This gives a set Y 5 hy , y , . . . , or signals which cannot be distinguished. Fig. 1b1 2

y , . . . ,y j, comprising N possible signals. For an represents such a situation. In a database comprisingi N

imaginary database of five substances, Fig. 1a shows several hundreds of compounds, a certain R valuef

(e.g. 0.56) may belong to a number of substances.
Unambiguous identification is no longer possible.

It must be realized that the measurement error of
the identification parameter is an additional factor of
utmost importance. If m(r ) represents the ‘true’i

value (the expectation value) for the identification
parameter of substance r , the parameter measuredi

for the substance, y(r ), can be represented by:i

y(r ) 5 m(r )6e , (1)i i I

where e is the measurement error of the signal ofi

substance r . Fig. 1c represents this situation: Eachi

substance can give a range of signals. The size of the
range is determined by the measurement error (i.e.
the reproducibility of the method).

Usually, it is assumed that the measurement of the
signal (identification parameter) of a substance r isi

Gaussian distributed with m(r ) as the center and si i

as the standard deviation (the size of the error).

2.5. Similarity and dissimilarity

The similarity between the identification parame-
ters measured for the unknown substance and the
candidate in the database is usually in the range of
0–1 [9]. When comparing spectra, the correlation
coefficient is a useful measure for similarity [13].

To determine the degree of dissimilarity, which is
the opposite of similarity [14,15], a so-called dis-
tance function is employed. For scalar, zero-order,
identification parameters, such as the chromatograph-
ic retention, the absolute difference is a suitable
parameter:

Fig. 1. Input /output graphs. (a, top) Unambiguous identification; d 5 uy(u ) 2 m(r )u (2)i k i(b, middle) substances may give the same signal; (c, bottom) each
substance may give a range of signals, ranges of substances may
overlap. Another useful distance function is the absolute
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eccentricity, z, since it takes into account the repro- Another (major) disadvantage of the window
ducibility of the measurement of the identification retrieval approach is that no differentiation is made
parameter involved: between the candidates. It is obvious that a candidate

whose identification parameter equals the signaly(u ) 2 m(r )k i obtained from the unknown is a more likely candi-]]]]z 5 (3)U Ui si date than one whose identification parameter is found
at the border of the window. Furthermore, a sub-Similarities and dissimilarities can be used to
stance with, in one method an outcome just outsidedevelop meaningful decision criteria, as shown in
the window, and in other methods with outcomesSections 3 and 4.
right on the dot, will be lost in a window retrieval
approach. In order to overcome these disadvantages,
a probabilistic approach is recommended.3. Database retrieval using a univariate

identification parameter
3.2. A probabilistic approach towards
identification3.1. Window retrieval

The identification problem can also be describedUp till now, many database retrieval procedures in
by the null hypothesis (H ), or by the alternative0use are based on so-called window retrieval. In
hypothesis (H ):Awindow retrieval the decision whether the reference

substance r is a candidate for identification isi H : m 5 r (5A)0 k idetermined by the following decision function:

retain r if d # C discard r if d . C (4) H : m ± r (5B)i i i i A k i

When C 5 2s , assuming a normal distribution, Based on the evidence provided by the analysesi

and if u 5 r , there is a 95% probability of measur- we decide on either accepting or rejecting H . Thisk i 0

ing an identification parameter for u that falls within may yield four possible results (e.g. [16,17]) ask

the window. In other words, the true candidate will depicted in Table 1.
be discarded in 1 out of 20 cases (false negative). In statistical hypothesis testing, the tests are
When the window is enlarged to 3s , the probability designed so that the probability of rejecting H ,i 0

increases to 99.6% and hence the true candidate will when in fact it is true, is equal to the so-called
only be discarded in about 1 out of the 400 cases. significance level (a) of the test. The probability of
However, enlarging the window will result in an accepting the null hypothesis when in fact it is false
increase of the number of possible candidates, thus is called the power, b, of the test.
enhancing the chances for a false positive identifica- There are basically two approaches towards hy-
tion! pothesis testing:

Table 1
Possible outcomes of a hypothesis test

Unknown truth

H : m 5 r H : m ± r0 k i 0 k i

Correct decision Erroneous decision
H : m 5 r True positive False positive0 k i

p 5 1 2 a p 5 b

Decision
Erroneous decision Correct decision

H : m ± r False negative True negative0 k i

p 5 a p 5 1 2 b
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measured for the unknown, y(u ), and the true valuek

1. By defining acceptance and rejection regions of the candidate, m(r ). Furthermore, there is a needi

under the assumption of H being true and by for a limit: If the parameters are sufficiently similar,0

setting a certain value of a. H cannot be rejected and substance r remains a0 i

2. By calculating the credibility that H is true ( p- candidate for unknown substance u .0 k

value), and by subsequently rejecting H if the Under the assumption that the identification pa-0

p-value is smaller than a predetermined value a. rameter of a substance r , due to errors in thei

measurement, is normally distributed with mean
m(r ) and standard deviation s the probability canIn database retrieval, each of the L unknowns has i i,

be calculated that H , according to Eq. (6A) is true.to be compared with all N substances in the database. 0

This probability is the shaded area under the curve inThus, the identification process involves a total of
Fig. 2 and can be expressed as [17]:L3N hypothesis tests. Actually, the tests are based

on the question whether the parameter measured for
`

the unknowns can be related to the given candidate, 1 221 / 2 zs di]]p( y(u )uH ) 5 2 E e dz (7)i.e. how similar is the parameter of the unknown ]k 0 Œ2p
zcompared with the true value of the parameter of the i

candidate. Thus, the hypotheses from Eq. (5) can be
where z can be calculated according to Eq. (3). Thisrestated as: i

probability can also be obtained from statistical
H : m(u ) 2 m(r ) 5 0 (6A)0 k i tables of the standard normal distribution. For in-

stance, in the example of Fig. 2, the value found for
H : m(u ) 2 m(r ) ± 0 (6B) the identification parameter of the unknown, y(u ), isA k i k

950. The value of the identification parameter of the
This indicates the need for a measure of the reference substance in the database, m(r ), is 1000i

dissimilarity between the identification parameters and the standard deviation, representing the measure-

Fig. 2. Probability density function, d( y), of the signal of reference substance r with mean, m(r ), 1000 and standard deviation (s ), 25. Thei i i

shaded area represents the credibility ( p-value) that the null hypothesis (the mean signal of the unknown substance, u equals the meank

signal of the reference substance) is true when 950 is found for the unknown.
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ment error of the identification parameter is assumed Other useful distance functions are the Minkowski
to be 25. According to Eq. (3) z 5 u950–1000u /25 5 metric, the Canberra metric, and the Czekanowskii

2.00 and from statistical tables it can be found that coefficient [15].
the probability under the null hypothesis is The correlation coefficient R (or other suitable
230.02350.046. When a has been set at 0.050, the function), obtained from comparing a spectrum of
reference substance with value 1000 will not be a substance u and a spectrum of reference substancek

candidate. For the unknown substance with a value r , is of another magnitude than the SI defined ini

of 950 the probability found is smaller than the Section 3.2. For instance, a value of 0.80 for a
critical value of 0.050. The measurement error of the correlation coefficient is a bad match, whereas a
identification parameter as mentioned above relates value of 0.80 for the SI represents a good match.
to the deviations that may occur between the mea- In order to decide whether u 5 r on the basis ofk i

sured data for the unknown and those stored in the spectra matching, the following hypotheses can be
database. In essence, it is the interlaboratory standard considered:
deviation for a particular analytical technique after H : r(r ) 5 1 (9A)0 iassessing the behavior of a suitable number of
analytes (mean and SD) in the technique by a H : r(r ) ± 1 (9B)A iselection of laboratories all over the world under
their instrumentation and circumstances. It should be

The probability distribution of R, with mean r(r ),inoted that an error will also occur when the unknown
is not known. However, R can be transformed

sample is being measured but the latter is negligible
(Fischer Z-transformation) and the resulting z is

in comparison to the above interlaboratory error.
standard normal distributed [20]:

The probability according to Eq. (7), is also called
T 5 2 ln h(1 1 R) /(1 2 R)j;the similarity index (SI). This SI represents a match,

a similarity, between the value found for the un- s 5 1/œ(w 2 3) ; z 5 T /s (10)T Tknown substance compared to the mean value of a
where w is the number of data pairs with which R isreference substance in the database [9,18,19]. It can
calculated.easily be seen from Fig. 2 that the SI (the shaded

The Fischer Z-transformation assumes that r 50area) approaches 1 when y(u ) approaches m(r ).k i
and this is not in agreement with the hypothesesWhen y(u ) deviates increasingly from m(r ), thek i
given in Eq. (9). Moreover, in the vicinity of R51, zshaded area becomes smaller and SI approaches
approaches infinity and is therefore not useful for ourzero.
purpose. For hypothesis testing, a dissimilarity such
as z from Eq. (3) is needed and therefore thei

hypotheses, compare Eq. (6), can be transformed4. Database retrieval using UV spectra
into:

H : 1 2 r(r ) 5 0 (11A)For more complex signals, such as spectra, the 0 i

absolute difference d as given in Eq. (2) is unsuit-i

H : 1 2 r(r ) ± 0 (11B)able. For these first-order signals alternative distance A i

functions are available, such as the Euclidean dis-
tance: Under the assumption that d 5 1 2 R and 0,R,

1, the same Fischer Z-transformation can be per-]]]]]]]w 2d 5 O ( y (u ) 2 m (r )) (8) formed and when d is not too far from 0, theœi v51 v k v i

following approximation can be made:
where the signals are vectors consisting of w discrete

s 5 1/œ (w 2 3) ; z 5 d /s (12)measurements [14]. d i d

As a similarity function for UV spectra, correlation
coefficients (R), such as Pearson’s product moment Using Eq. (12) decisions can now be made on the
correlation coefficient, are frequently used [13]. hypotheses in Eq. (11). As an example, UV spectra
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from a diode array detector with 100 diodes (w5 used by Massart and De Clerq for the selection of
100, s 50.1) from an unknown and a reference identification methods [27].d

substance were compared resulting in a correlation For the supervised pattern recognition, the class
coefficient of 0.95 (d50.05). According to Eq. (12), membership for a set of objects is known. This is the
for z a value of 0.50 is calculated. The tables of the so-called test-set or learning-set. Based on propertiesi

standard normal distribution give for z 50.50 a one- measured for these objects, a membership function isi

sided probability of 0.309 and therefore, a SI of deduced. This membership function can be used to
0.618 is obtained (see also Section 3.2). This SI assign unknown objects to a specific class. Methods
value represents the credibility ( p-value) of the null frequently used are the K-nearest neighbor method
hypothesis stated in Eq. (11) and, since this value is (KNN), the linear learning machine (LMM), statisti-
larger than the critical value (a) of 0.050, the cal linear discriminant analysis (SLDA), ALLOC,
reference substance is a possible candidate for SIMCA, etc. [26]. In both forms of pattern recogni-
identification. In other words, the hypothesis u 5 r tion classification plays an important role. Identifica-k i

cannot be rejected. tion by database retrieval may be seen as a complex
form of supervised pattern recognition, where each
reference substance represents a particular class of its
own. The unknown substance should be classified

5. Multivariate database retrieval using the classes established by the reference sub-
stances.

In the previous paragraphs the identification pa- A major disadvantage of the above multivariate
rameter was from a single identification method methods is that usually all identification parameters
yielding a scalar, unidimensional, identification pa- for the unknowns have to be available: For the
rameter or yielding an array of information (spec- unknown all methods in the database have to be
trum). In practice, however, unequivocal identifica- carried out. Thus, a sequential identification process,
tion, resulting in one single candidate, almost always where the results of the first identification method
requires the use of more than one (or a multitude) of determines the choice of the second identification
identification methods, each yielding a scalar identi- method, etc. becomes impossible. Yet, such a sequen-
fication parameter or an array of information. tial process is the approach of choice in STA and

The identification parameters obtained for a single many related areas in the biosciences. In other
substance from K univariate methods can be re- words, the above multivariate methods are less
garded as a K-dimensional random variable. This suitable when only a selection of the available
means that for reference substance r , for each of the identification methods is employed. Alternative ap-i

K methods, identification parameters m (r ) (i 5 proaches are being discussed in the following sec-j i

1, . . . ,N, j 5 1, . . . ,K) are present in the database. tions.
Subsequently, for the unknown substance in each of
the K methods, data are collected: y (u ).j k 5.1. Discrepancy index

Multivariate mathematical techniques like Princi-
pal Components Analysis (PCA) and pattern recogni- If the analytical methods are totally independent of
tion have been used for such identification purposes. each other, the sum of the squares of the eccen-

2Meglen discussed the use of PCA for the examina- tricities (z ) is x distributed with K degrees ofj
tion of large databases [21]. Musumarra et al. used freedom [16].
PCA for identification using TLC data [22,23]. The eccentricities are calculated according to Eq.
Pattern recognition is actually a collection of multi- (8), one eccentricity for each of the K methods. The

2variate techniques with two main types: Unsuper- test statistic G can then be calculated:
vised pattern recognition (unsupervised learning) and

2 2 2 2 2G 5 z 1 z 1 ? ? ? 1 z 1 ? ? ? 1 z (13)supervised pattern recognition [24–26]. In unsuper- 1 2 j K

vised pattern recognition clustering is the major
2 2technique. Clustering or numerical taxonomy was Since G is x distributed, the credibility ( p-
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value) of the joint null hypothesis that, in the K • Instead of multiplication, the geometric means of
methods the values found for the identification the probabilities is determined [19]:
parameters of the unknown are equal to those of the ]KKreference substance, can be calculated.

SI 5 PSI (15)2 i ijThe parameter G is also called the discrepancy j51œ
index (DI) [28]. Using the critical value obtained

2 Relative probabilities have the disadvantage that iffrom statistical x tables and on the basis of the DI,
only one or two substances are found with lowit can be decided whether a substance is a candidate

2 2 similarity, these substances will have a high relativefor identification (DI # x ) or not (DI . x ).K ;a K ;a probability. It gives a false feeling that a good matchThe DI can be a useful parameter. However, the
is obtained. The opposite is also true: A list of tencritical value on which decisions have to be made is
substances with very high p-values results in verydependent on the degrees of freedom, i.e. on the
low (,0.1) relative probabilities for each of them.number of methods used. Moreover, handling of
For these reasons, we recommend the use of the jointmissing values can only be performed manually.
similarity index based on the geometric means of the
SI’s of the individual methods used.

5.2. Multivariate similarity index On the other hand, it should be noted that if for a
substance the joint multivariate SI is approaching 1,i

Under the assumption that the K methods are this does not mean that the latter is the only
independent of each other, a joint probability can be candidate for identification. There may be more
calculated by multiplication of the probabilities (SI ;ij substances with similar SI . In the latter case ini
i 5 1, . . . ,N; j 5 1, . . . ,K) found in each of the K database retrieval, a list of substances will be ob-
methods. This is comparable with throwing a dice: tained and additional methods have to be utilized to
First throw a five (probability51/6), second throw a obtain a list with a single candidate.
two (probability51/6); The joint probability of According to Eq. (14), each of the methods used
throwing first a five and then a two is equal to is treated likewise. In practice, however, the identifi-
1 /631/651/36. cation power of, for instance, a retention index (RI)

Each of the null hypotheses in GC is not comparable with a UV spectrum.
Obviously, a RI, as a unidimensional parameter, hasm (u )-m (r ) 5 0 (14)j k j i not the same weight as a multidimensional parameter
such as a spectrum. Therefore, it is reasonable tocan be tested separately, resulting in K p-values for
give a spectrum more weight in the joint SI than aeach of the reference substances r . The jointi.
single retention parameter. This can be achieved byprobability for the K null hypotheses is then the
raising each of the single SI’s to the power w , whereproduct of the K p-values. j

for the retention parameter w 5 1 and for a spec-However, the critical value of accepting or reject- j

trum, a w of 2–3 can be applied. In this way, aing the joint null hypothesis that in the K methods j

spectrum weighs 2–3 times more than a singlethe values found for the identification parameters of
retention parameter. The joint similarity index willthe unknown are equal to those of the reference
then become:substance, is dependent on the number of methods

used. Moreover, the more methods used, the smaller KK 1 /O wj51 jwjthe probabilities become. To overcome this problem SI 5 PSI (16)S Di ij
j51two approaches were developed:

Weight factors for the individual analytical tech-
niques can be determined on the basis of their

• Summing the joint probabilities over all sub- identification power (IP), as assessed by the mean
stances in the database and dividing the individual list length (MLL).
probabilities by this sum. In this way, relative The joint similarity index has the advantage of
probabilities (F ) are obtained [29]. being easily interpretable as a match factor. How-i



134 J. Hartstra et al. / J. Chromatogr. B 739 (2000) 125 –137

Table 2ever, the critical value, on the basis of which a
Substances selected from the database as candidates for identifica-substance has to be accepted or rejected as a
tion, based on the RIs in GC, the corresponding RIs in HPLC and

candidate for identification, has to be developed in the correlation coefficients of their UV spectra with that of the
practice. At this point, after various simulations, unknown (see Section 6.1 for details)
using the geometric mean, a value of 0.05 seems

Substance RI–GC RI–HPLC R
appropriate. The latter is illustrated in the example number s 5 20 s 5 10 w5160i i

given in Section 6. It should be noted that the analyst
1 1980 800 0.312

may choose his own critical value as well as the 2 2005 720 20.005
weight factors he wants to use, based on his own 3 2010 600 0.560
expertise or judgement. In doing so, he can either 4 2040 520 0.650

5 2065 505 0.996narrow or broaden his search.
6 2070 605 0.654
7 2080 490 0.805
8 2100 670 0.734

6. Substance identification in practice 9 2150 400 0.245
10 2170 425 0.368

6.1. A simplified example of substance
identification in STA

the combined methods. In the latter, the spectra have
A plasma sample of an intoxicated patient is been given double weight as compared to that of the

extracted and the extract, after evaporation and RIs:
redissolution in a suitable solvent, is injected in a 2 1 / 4SI 5 h p * p * ( p ) j (17)i i1 i2 i3GC–FID and in a HPLC–DAD under standardized
conditions [10,30]. For the GC analysis one peak is

It can be seen from Table 3 that after performingobtained with a RI of 2075 after calibration with
GC and HPLC three substances are still candidatesn-alkanes, and with the HPLC system one peak is
for identification (SI .0.05). After introducing theiobtained with a RI of 510 after calibration with
spectra, only one candidate remains, i.e. substance 5.1-nitroalkanes. Moreover, a diode array spectrum is
Substance 7 falls below the limit of 0.050.generated from 200–360 nm, resulting in 160 data

pairs. With these results, database retrieval is per-
formed with the algorithms developed by Hartstra 6.2. Multiple unknowns
and utilizing a database of more than 1300 tox-
icologically relevant substances [19]. In the daily practice of substance identification,

On the basis of the RIs present in the GC-data- database retrieval is more difficult than in the above
base, the computer selects ten substances as possible example because the samples are usually more
candidates. These are presented in the first column of complex: When, for instance, GC and HPLC are
Table 2. Note that the ‘window’ used for retrieval is carried out on extracts of the same sample, a number
larger than 3s, which prevents outliers to be rejected. of peaks may be seen in each chromatogram. Yet, the
For each of the ten candidates, the corresponding RIs number of peaks may not be the same, nor will this
in HPLC are retrieved and the UV spectra are be the case for the elution order. Hence, it is hard to
compared with that of the unknown, resulting in establish which GC peak will correspond to which
correlation coefficients R. The latter two parameters HPLC peak. Therefore, all combinations of GC
are given in the second and third column of Table 2. peaks with HPLC peaks have to be tested separately

Table 3 shows the results of the calculations in the database retrieval process. Other complications
according to the procedures given in Sections 3.2, 4 may be that peaks may coincide in one run but not in
and 5.2. By comparing the values found with those the other, that a substance will not show up with one
listed, the eccentricities, z , and the probabilities, p, technique because it is below the detection limit, thati

are then obtained for the individual methods. Finally, matrix components will give peaks or interfere with
the joined similarity indices (SI ) are generated for the spectral data, etc. Furthermore, when a thirdi
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Table 3
Results of the calculations using the data in Table 2 in the process of identifying the unknown

Subst. GC HPLC SI Spectrum SIi i

r GC1 GC1i

z p z p HPLC z p HPLCi1 i1 i2 i2 i3 i3

1UV

1 4.75 0.000 29.0 0.000 0.000 10.6 0.000 0.000
2 3.50 0.000 21.0 0.000 0.000 37.5 0.000 0.000
3 3.25 0.002 9.00 0.000 0.000 5.92 0.000 0.000
4 1.75 0.080 1.00 0.318 0.159 4.72 0.000 0.000
5 0.50 0.618 0.50 0.618 0.618 0.05 0.960 0.770
6 0.25 0.802 9.50 0.000 0.000 4.52 0.000 0.000
7 0.25 0.802 2.00 0.046 0.192 2.61 0.010 0.044
8 1.25 0.212 16.0 0.000 0.000 3.42 0.000 0.000
9 3.75 0.000 11.0 0.000 0.000 12.34 0.000 0.000

10 4.75 0.000 8.50 0.000 0.000 9.33 0.000 0.000

chromatographic technique is being used (e.g. a TLC the biosciences can best be approached. Database
system, or a second HPLC system) the situation retrieval using a probabilistic approach is to be
becomes even more complex. Fortunately, informa- preferred. For all identification parameters generated,
tion from detectors, such as UV and MS data, are dissimilarities between the unknown(s) and the refer-
easier to combine with chromatographic data, since it ence substances in the database need to be estab-
is known to which peak this spectral information lished. These dissimilarities can then be used in
belongs. hypothesis testing. The probability (reliability, credi-

For these complex situations suitable computer bility) that the null hypothesis is true, the so-called
programming must be available. For toxicological p-value or similarity index (SI), can be used as the
analysis we have developed programs that are ca- decision criterion whether a reference substance is a
pable of dealing with the above issues and that can candidate for identification or not.
handle TLC data combined with color reactions on When more than one analytical method or de-
the plate, GC data combined with molecular weights tection system is used, multivariate database retrieval
from CI–MS and HPLC data combined with diode is required. This can be done by using the dis-
array spectra [19]. The software is also commercially crepancy index (DI) or the joint similarity index
available [32]. The program has been set up in such (Si ). The latter is the method of choice because it isj

a way that it can also accommodate the results of more straightforward in deducing whether a sub-
immunoassays and receptor assays, as well as more stance is a candidate for identification or not.
comprehensive mass spectra. It will be obvious that for meaningful substance

Some practical examples in STA have been given identification in the biosciences one must follow a
by Hartstra et al. [31]. systematic, concise and well planned approach in all

three steps of the qualitative analysis, i.e. in:

7. Discussion and conclusions
• Sample work up and concentration (usually by

The ultimate goal in the qualitative analysis in techniques such as liquid–liquid extraction or
complex matrices is to demonstrate with acceptable solid-phase extraction).
probability that for an unknown constituent of that • Differentiation and detection (usually by competi-
matrix only one substance comes into consideration tive binding assays and by chromatographic tech-
and that all other substances can be rejected. niques and their related detection systems).

In the above paragraphs we have outlined how • Identification by multivariate database retrieval
substance identification in complex matrices in [33].
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